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Abstract. The mathematical structure of the reduced-
gradient-following (RGF) path introduced by Quapp
et al. (1988 J. Comput. Chem. 19:1087) is reviewed and
analyzed. We report two new algorithms to evaluate the
RGF path. The RGF path is also compared mathemat-
ically and computationally with the gradient extremals
path. An example of the evaluation of the RGF path is
also reported.
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1 Introduction

From a theoretical point of view the path of a chemical
reaction can be defined as a curve on the potential-
energy surface (PES). This curve goes from the reactant
to product minima trough a saddle point of index 1. The
saddle point is nothing more than the transition
structure of transition-state theory. For reviews about
reaction paths see Refs. [1, 2].

The reaction path can be seen as a parameterization
of the PES with respect to a parameter, the so-called
reaction coordinate (RC). If x is a coordinate vector of
dimension N, then the curve associated with the reaction
path is x(s), where s is the RC. As a consequence of this
definition, the N-dimensional PES is reduced to a one-
parameter problem. Using the reaction path concept it
is, in principle, possible to locate both stationary points
and dynamics without the calculation of the whole PES
[3, 4]. There are many different mathematical ways to
define a reaction path. The most used reaction path in
chemistry is the one that follows the steepest-descent
curve from the first-order saddle point. If this type of
curve is computed using mass-weighted coordinates then
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we have the so-called intrinsic reaction coordinate (IRC)
[5] or minimum energy path (MEP). The tangent along
the IRC or MEP is defined by an autonomous system of
differential equations and its solution is unique. The IRC
curve does not present bifurcations except in the
stationary points. The mathematical expression of
the tangent to the steepest-descent curve is

dx(s)  glx(s)
&~ leRe)] M

where x and g are the coordinate and gradient vectors
respectively and s is the arc length of the curve or RC.
Another possibility to define a path between stationary
points corresponding to minima and first-order saddle
points is the reduced-gradient following (RGF) recently
introduced by Quapp et al. [6]. In the RGF path the
gradient of each point of the path has a constant
direction, which is mathematically formulated as an
implicit function

0]
lgx()]|

where the unit vector r is the selected constant direction
and ¢ is the parameter of the resulting curve. The RGF
method can be seen as a rigorous mathematical formu-
lation of the old ““distinguished coordinate method™ [7].
The RGF paths possess some important properties;
the branching points of these curves are valley-ridge
inflection (VRI) points of the PES [8].

So far three methods have been proposed to compute
the RGF path. The first of them was given by Quapp
et al. [6] taking into account that the integration of the
RGF curve involves at each iteration both a predictor
and a corrector step. These authors use QR decompo-
sition to evaluate the predictor step and a Newton—
Raphson procedure as a corrector step. More recently
Bofill and coworkers [9, 10] have proposed two new
methods. Both methods use as corrector step the
Newton—Raphson algorithm, but as predictor step the
IRC technique is used in one method and an eigenvec-
tor-following technique in the other.

=0, (2)



Because of the interesting properties of the RGF
curve we propose another method to follow it. The
article is organized as follows: first, we describe the
mathematical basis of the RGF curve; second, we give
the description of two new algorithms to evaluate the
most general RGF curve; a theoretical comparison with
the gradient extremals (GE) path [11] is also reported;
finally, some examples are given and analyzed.

2 Theoretical background of the RGF path

The tangent to a curve, dx(7)/d¢, determines the varia-
tion quotient of the points of this curve with respect to
the parameter ¢ that characterizes the curve. Conse-
quently the first step consists of evaluating the form of
the tangent vector of the proposed curve. We differen-
tiate Eq. (2) with respect to ¢ by taking into account the
fact that the normalized vector r is constant,
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Where H[x(7)] is the Hessian matrix evaluated at x(¢).
For points lying on the RGF path, Eq. (2) is satisfied
and Eq. (3) takes the form

dx(?)
dt

Following Quapp et al. [8] we define a rectangular
matrix, P,, such that the columns of this matrix form an
orthonormalized basis set, orthogonal to the normalized
r vector,

PrTr = 0N71 y (5)

where 0,_; denotes a zeroed vector of dimension N—1.
The requirement that the N—1 columns of P, form a
orthonormal basis can be relaxed to a set of N—1 linear
independent direction vectors orthogonal with respect to
the unit vector r. Multiplying on the left Eq. (4) by P!
we obtain

x H[x(1)]

(1 —re" ) H[x(1)] =0 . (4)

dx(s)
P =0y_1 . (6)

The homogeneous system of N—1 linear equations
(Eq. 6) determines the tangent vector of the RGF curve
[6, 8]. Some part of the present discussion is based on the
concept of the vectors H-conjugated. The concept of
conjugated vector is important and is used in optimiza-
tion theory [12]. The solution of the set of linear equa-
tions (Eq. 6) gives the first-order predictor step (see
Eq. 28). The corrector step should be carried out in
order to eliminate the gradient vector components in
the directions that are orthonormal to the unit vector r.

The previous discussion leads to an important conse-
quence: the gradient vector, g[x(¢)] at any point of the
RGF curve, x(7), can be expressed in the full set of N linear

PIH[X(1)]
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independent directions, S = [r|P,]. The notation [r|P,]
means an N X N matrix whose first column contains the r
vector and the others N—1 columns are contained in the
N x (N—-1) P, submatrix. If «(?) is the component of the
gradient vector g[x(7)] in the r direction then

efx(0] = P o) ) =at0r )

By comparing Eq. (2) with Eq. (7) we see that
o(t) = |g[x(1)]l. From Eq. (7) we conclude that the en-
ergy is stationary with respect to the P, directions. In
principle, the stationary condition has a minimum
character; however, at the moment this is not important.
Another important consequence of Eq. (7) is that the
gradient vector preserves the direction along the RGF
curve since the vector r is constant.

Let us now to write the tangent vector, dx(z)/dt, as a
function of the N linearly independent directions S,

dx(?) b,

—5 = Sb=[r[P] (le

where the vector by_; " = (bs....,by). Note that the vector
b depends on the parameter ¢. Substituting Eq. (8) into
Eq. (6) we obtain

0y_1 = PTH[x(7)]Sb
= P H[x(0)]rb; + PTH[x(¢)]P;by_; . 9)

) =rb +Pby_; , (8)

Equation (9) possesses two types of general solution.
The first one can be expressed as

by_1 = —(PTHx()]P;) ' PTH[x(0)]rb; |, (10)

given the component b, the by_; vector is deter-
mined. When the P'H[x(#)]P, matrix is nonsingular,
i.e., det(PTH[x(¢)]P,) # 0, the tangent vector in the S
representation vectors can be expressed as

b" = (b1,by_1)=(1,(=A""),,...,(=A"')y )b, (11)

where A = PTH[x(¢)|P;,f = PTH[x(¢#)]r and b, is deter-
mined by normalization. This tangent vector corre-
sponds at first order to the predictor step of the RGF
curve.

If the matrix A is singular it is convenient to diago-
nalize it. Let U be the unitary matrix that diagonalizes A,
then

P'H[x(1)]P, = A = UaU" | (12)

where a is a diagonal matrix. Then, Eq. (9) can be
transformed into

—ah = eb] s (13)
where h = U'by_; and e = U'f = UTPTH[x(¢)]r. Equa-

tion (13) corresponds to a set of N—1 decoupled
equations:
—aihi:eibl (1217,N—1) . (14)

Because det(A) = 0, at least an eigenvalue g; is zero
and other solutions must be investigated. Let us assume
that a; =0, e; # 0, then b; =0, and consequently the
RGF tangent is normal to the normalized vector r. The
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normalized tangent vector is b’ = 0, Uy jpe .., Unoy ),
where U, ; are the elements of the U matrix. Note that
the b; component represents the cosine of the angle
between the RGF tangent vector and the normalized
vector r.

The curvature vector of the RGF path, d*x()/d7,
must be obtained by derivation of Eq. (6) with respect to

the parameter ¢:
p{ (o 7 4 i S5 o
(15)

where F[x(7)] is the third energy derivative tensor with
respect to the x variables evaluated at x(¢). The
(F[x(n)]dx(2)/d¢) symbolism is used to indicate a square
matrix that is a contracted product of a three-index
array with a vector yielding a two-index array; thus,

(Ab);;=> " Ay, . (16)
k

The curvature vector can be written using the set of N
linear independent directions S

d2X(t) ci
- Sc = [r|P;] (CN—I ) . (17)
Substituting Egs. (8) and (17) into Eq. (15) we get
PI(F[x()]Sb)Sb + P H[x(¢)]Se = Oy_; . (18)

When the A matrix is nonsingular the curvature
vector can be expressed as

' =(1,(-A), ..., (AT )y e
+(0,(=A7'd),, ..., (AT D)y ) (19)

where d = P! (F[x(#)]Sb)Sb. If the tangent vector is
normalized, i.e., [dx(r)/d?]" [dx(¢)/df] = 1, then the cur-
vature vector is normal to the tangent vector, i.e., [dx(7)/
df]"[d*x(7)/d7*] = 0 or in the S basis set representation
¢’ = 0, from this condition the ¢; component is
determined. It should be noted that for a strictly
quadratic approximation the curvature vector is ¢ =0
at this point. If the actual potential energy is replaced by
a local quadratic approximation, then such approxima-
tion to the potential energy will yield a good approxi-
mation to the actual curvature vector only when the
elements of the third-order derivatives in the direction of
the tangent vector are small enough. If this is not the
case, the ¢; component will be nonzero and a correction
step will be important in order to follow the correct
RGF path.

When the A matrix is singular Eq. (18) can be
transformed into

—am =ec; +n (2())

where m = UTcy_; and n = U"d. Equation (20) repre-
sents a set of N—1 decoupled equations:

—aim; =ejcy+n i=1,...,.N—1) . (21)

As in the tangent case, assuming that ¢; =0, ¢;# 0
then ¢, = —nj/e;, Because the tangent and curvature
vectors are normal, m; = 0.

It is interesting to consider the situation which occurs
when the Hessian matrix in a point of the RGF curve
possesses an eigenvector that coincides with the nor-
malized vector r. The vector r is H-conjugate with respect
to the set of N—1 vectors collected in the P, matrix. In this
case f = P,TH[x(¢)]r = Oy_;. If the matrix A is nonsin-
gular, then the normalized tangent vector in the S basis
representation is b! = (1, ON,lT) and consequently in the
geometry coordinate representation the tangent vector is
dx(#)/dt =r, and owing to Eq. (7) the tangent vector
is parallel to the gradient vector. The curvature vector
ise’ =(0,(~A'd),,...,(—A"'d),_,), and is normal to
the normalized vector r. Note that ¢; = 0. These kinds of
points are know as turning points (TP) [8, 9].

Finally we are dealing with the second kind of
solution of Eq. (9). This solution is presented when
P.TH[x(¢)]r = 0y_;, ie., the normalized vector r is
H-conjugate with respect to the N—1 linear indepen-
dent vectors collected in the P, matrix. In order to
follow a path with this condition the vector r and the
S matrix are not constant. Instead, because Eq. (5)
should be satisfied, the r vector is an eigenvector of
the current H[x(#)] matrix. The eigenvectors are a
special kind of H-conjugate vector [12]. In this
case from Eq. (10) we obtain by_; = 0y_; for a given
by.

In order to understand the nature of this second type
of solution, first Egs. (5) and (6) can be compared,
= Hix()] X (22)
since P, is a set of N—1 linear independent vectors and
p is a nonzero scalar. Now, substituting Eq. (8)
into Eq. (22), multiplying the resulting equation on the
left by r' and imposing the conjugancy condition,
r"H[x(¢)]P; = Oy_; ", the following equation is obtained:
rirp = rTH[x(7)] d);—gl) =rTH[x(1)]rb; = 1 . (23)

From this equality we obtain a value for the b;
component, b; = u/(r"H[x(¢)]r), and the tangent vector
can be obtained as
dx(?) r

dar ~ MHEXO)r (24)
since by_; = Oy_;. Substituting Eq. (24) into Eq. (23)
and taking the first equality of Eq. (23), one can write

pr" {H[x(¢)]r — rr " H[x(¢)]r} =0 . (25)

Finally, using the fact that the scalar p # 0 and the
normalized vector r is an eigenvector of the H[x(¢)]
matrix and also r # 0, then

{g[x()]} "H[x(1)g[x(1)]
{glx()]} "glx(1)]

H[x(1)]g[x(1)] = g[x(1)]

o (20)



where Eq. (2) has been used. Equation (26) is the basic
equation of the GE paths [11, 13, 14]. The previous
deduction can be seen as a pedestrian derivation of the
GE path; a more rigorous proof will be outlined later.
According to this derivation any point of the GE path
satisfies simultaneously both Eq. (7) and P,"H[x(¢)]r =
0y_1. Owing to this fact, at each point of the GE path
the S matrix changes. The S matrix is formed by a set
of vectors which are conjugate with respect to the
current H[x(7)]; more specifically they are eigenvectors
of this matrix. This is an important difference with
respect to the RGF methodology, where the S matrix
is constant and is not forced to be conjugate with
respect to the Hessian matrix. The GE path does not
always connect the minimum with first-order saddle
points, so they are not candidates for a reaction path.
On the other hand, the RGF path goes from a
minimum to another minimum through a first-order
saddle point if the normalized r vector is properly
selected.

3 RGF algorithms
3.1 Basic considerations

According to the previous discussion the RGF curve
must be defined as follows: given a set of N linear
independent and orthonormal direction vectors, S, the
RGF curve is composed of the set of points on the PES
such that the gradient vector, expressed in the S-direction
vectors, has only one nonzero component in one of these
directions, which has to remain the same for all this set of
points. The first question in the application of the RGF
methodology is how to define the search direction
normalized vector r. Because we are interested in finding
the transition structure of an elementary reaction, by
comparing the molecular geometry of both the reactant
and product we observe the geometry parameters that
present the largest difference between these two minima.
Now, we make a perturbation of the molecular geometry,
either of reactant or product structure, in the geometry
parameters that present the largest observed difference [9,
10]. In the next step these parameters are ket fixed and the
energy of the molecular system is minimized with respect
to the rest of the molecular geometry parameters. The
resulting point is taken as the first point of the RGF
curve and the normalized gradient vector as the r vector.
Note that the normalized r vector and the set of vectors
P, correspond to the x, geometry variables or driving
force variables and the x, equilibrium variables, respec-
tively, used in Refs. [9, 10]. The second question concerns
the way to integrate the RGF path. The integration is
done by a quadratic stepwise procedure, in other words if
X is a point on the RGF path, the energy variation is
approximated by a quadratic Taylor expansion around
Xop-

AE® (xg + Axg) = E® (x + Axg) — E(x0)

1
= Ax(g, + EAxgHoAXO , (27)
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where gy and Hy are the gradient vector and Hessian
matrix, respectively, at the point xy and the Ax( vector is
defined as Axy = x — x¢. The quadratic approximation
of the energy to integrate the RGF path is controlled by
using the restricted-step technique [15]. The restricted
step ensures that (AXOTAX())I/ 2 < R, where R is the “trust
radius” that characterizes the “trust region”. The “trust
region” is the region where the quadratic expansion of
the energy is valid.

Given any point on the path xo = x(#), the path itself
can be represented as a Taylor series in ¢ expanded about
XO’

dx (1) 1d*x(¢) 2
x(1) = x(to) + 0o+5 Ay + -
SU P 2 de |,
=x(to) +S (bAto - %cAt(z) + - ) : (28)

where Aty =t — to and Eqgs. (8) and (17) have been used.
The path is specified at first and second order in Az by
knowing the tangent and the curvature vectors respec-
tively. This Taylor series representation of the path
forms the basis of the two numerical integration
algorithms presented next.

3.2 Description of first-order approximation

In this subsection we outline the proposed first-order
approximation (FOA) algorithm.

1. Given a point Xxq, a “trust radius” Ry and a
normalized vector r, which is the search direction,
compute the N—1 orthonormalized vectors, P, or-
thogonal to the r vector. The orthonormalization
procedure is carried out by using a Gram—Schmidt
procedure by taking as initial N—-1 independent
vectors the columns of the unit matrix I. Store these
N orthonormal basis vectors in a matrix S = [r|P,].
Compute the energy, Ey, the gradient vector g, and
the Hessian matrix Hy. Set k = 0.

2. Project the Hessian matrix, STH,S. Calculate the
normalized tangent vector. Using Eq. (10) compute
the by_; vector. Set A; = P,TH,P,; check the value
of the det(A;). The b; component is evaluated by
normalization, see Eq. (11). The A# parameter is
computed as follows: nwr = —rTg, /{[rTH;r —rT
HkPrAk_lPrTHkr}bl} is the Newton—Raphson step
following the RGF curve, then Afy=nwr if
|Aty| = (AkaAxk)l/2 < Ry, otherwise |Afy| = Ry. If
FTHyr — vTH, P, A 'P,TH,x] < 0 the sign of Az is
the same sign as the nwr step otherwise take —nwr.

3. Ensure that the quadratic expansion of the energy is
valid. The “trust radius” is modified, R, — Ry,
according to some algorithm described elsewhere [9].

4. Compute the predictor step x = x; +SbAzy. The arc
length for this step is |A#|. Compute the energy, E,
and the gradient vector g(x) of this new predictor
point. If |g(x)| < ¢ a stationary point has been found,
stop. Otherwise update the Hessian matrix by using
the Murtagh—Sargent—Powell (MSP) formula [16, 17],
Hk — H.
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5. If |P,"g| > & a correction step is needed, otherwise go
to step 6. The correction step consists of a minimi-
zation of the energy with respect to the by_; vector
components by fixing by = 0. The minimization is
carried out by using a standard quasi-Newton—
Raphson algorithm [15], i.e., at each iteration the
energy and the gradient vector are evaluated and the
Hessian matrix is updated using the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) formula [15].
At each Newton—Raphson step the projected Newton
equation

Oy =Plg+ Aby_, (29)

is solved The minimization is converged when
|P.Tg| <&, obtaining a new point x, energy E,
gradient vector g and Hessian matrix H.

6. Change the point X — X411, £ > Er+1, € > 8i+1,
and H - Hy .. Set k =k + 1, go to step 2.

In the previously described algorithm the resulting
updated Hessian matrix is checked by the Eckert and
Werner procedure [18]. Normally the correction step is
evaluated very few times, and it converges within two or
three iterations. The BFGS formula is used in the cor-
rection step rather than the MSP one since the BFGS
formula is much more efficient for minimization; how-
ever, in this case, the BFGS formula updates only the
part of the Hessian matrix associated with the subspace
defined by the set of column vectors collected in the P,
matrix and, consequently, the inertia of the full Hessian
matrix is preserved during the iterative process. The in-
ertia of a matrix is the number of positive and negative
eigenvalues. Two alternative algorithms to compute the
correction step are given in the Appendix.

3.3 Description of second-order approximation

Because both algorithms are closely related, we only
describe the steps of the second-order approximation
(SOA) algorithm which are different with respect to the
FOA algorithm already described. These are

3. Once the normalized tangent vector, b, is evaluated, a
new Hessian matrix is computed in the direction of
this tangent. The matrix (F[x(¢)Sh) ~ (H'; — Hy)/0,
where H';, is the Hessian matrix evaluated at the point
X’x = X, + Sbd and 9 is a sufficiently small number.
Compute the vector d = P,T(F[x(z)Sb)Sb. Evaluate
the curvature vector using Eq. (19). The Az, param-
eter is computed by solving the second-order
equation: 0=rTg,/[fTHyr — rTHP, A, 'P,TH,x|
+biAly +1/2¢i(An)>. If [(Ag)* + 1/4cTe(Ar)Y]'*
= (Ax;T Axk)1/2 < Ry, we take this Aty as the current
parameter, otherwise the Az, is evaluated by solving
the equality  (Af)* +1/4cTe(A)* =R If
r"H;r — r"H; P, A, 'P.TH;r < 0 the sign of Ar is
positive otherwise it takes a negative sign.

4. Compute the predictor step x = x;+S[bA#y+1/2¢(A
10)*]. The arc length for this step is 1/2{(c'¢c)"?Az,

(cTe(Arg)* + )2 +1og[(cTe) Aty + (eTe(Ar)* + D)V}
(cTc)_ 12

Using this algorithm, the number of iterations
employed in the correction step is lower that in the
first-order algorithm. The correct evaluation of the
RGF curvature vector only requires the evaluation of a
second Hessian matrix in the direction of the tangent
vector. The TP is detected when bi=1 and |c¢;| =~ 0.
At this point better performance is obtained if the
pred1ctor step evaluated by the expression
X =X, + [ —1/60 C (Alo)] AZ0+]/2PrCN 1(Alo) With
this predictor step, the corrector step conyerges | with a
few number of 1terdt10ns The term —1/6¢ c(Azp)’ is the
r component of the d*x(¢)/d¢® vector at the TP. The TP
problem is better handled by the SOA algorithm than
with the FOA algorithm, because the FOA may be
divergent in this situation. Finally the arc length
formula for each step is derived from the expression

d(tt>) &
Ato

/\/ +cTc Ar)? dAt, (30)

where the first derivative of Eq. (28) with respect to ¢ up
to first order has been used.

s(Atp)

4 Theoretical and computational comparison
with GE methodology

First of all, we outline the basic theory and computational
procedure of the GE method. According to Hoffmann
et al.[13] and Sun and Ruedenberg [14] the GE are curves
on the PES such that at each point of the path the square of
the gradient norm is stationary with respect to the
variations within the contour subspace, E(x) = constant,
passing through this point of the path. The gradient
vector, g[x(7)], associated to each point of the GE path
should satisfy Eq. (26) that now can be rewritten as

cixio — (1 ExOHExO] )HX .
x(0) ( (¢ ” g[xm] x(1)lgfx()]
= (I-rr")H[x(1)]g[x()] =0 . (31)

Note that in GE, g[x(7)] = or, where « = |g[x(¢)]| and
consequently Eq. (31) must be written as

PH[x(0)]g[x (1)) = PPH[x()]ro = Oy (32)
with
Plglx(1)] = Pira =0y , (33)

for o # 0. The S matrix is built by the set of eigenvectors
of the H[x(7)] matrix. Using Eq. (31) Sun and Rueden-
berg [14] showed that the GE path are curves which
connect those points where the steepest-descent curves
have zero curvature. This is because the curvature vector



of any steepest descent—ascent curve line is Kk[x(?)]/
{{g[x(1)]}"g[x(0)]}. In order to obtain the tangent vector
of the GE path, we derive the implicit function given in
Eq. (31) with respect to the ¢ parameter
d dx(¢)
0 =—k[x(t)] = Vik[x(¢ :
LK) = VIKIx()] <
After some algebraic manipulations Eq. (34) gives
[14]

0= (1 - ") {(FIx()r)o + (HIx(1)])
dx(z)
de

where F[x(?)] is the third-order energy derivative tensor
with respect to the x variables evaluated at x(7).
Multiplying Eq. (35) on the left by ST and substituting
it into Eq. (8) as well as using Eqgs. (32) and (33) the
following equation is obtained:

Oy = PI(F[x(6)[r)r « by + PT{(F[x(¢)]r)a
+ (HX(O) I HX(OJFHX(0)] | Pyt . (36)

(34)

—rTH[X(t)]rH[x(t)]} (35)

From Eq. (36) we obtain the by_; vector:
b1 = —{PF{ (FIx()Jr)a+ (HIx(1)])?
—rTH[x()[rH[x(7)] }Pr}_lPrT (FIx())r)raby. (37)

Consequently the GE normalized tangent vector in the
S-basis representation takes the form b’ = (b, by_; "),
where the b, component is determined by normalization.
It is interesting to compare this equation with Eq. (11).
The GE predictor step is evaluated as x = xg+ SbAf,,.
Normally x lies slightly off the GE path, so a corrector step
is needed to search for the new point on the GE path [14].
From a mathematical point of view both the GE and RGF
paths are defined by continuous implicit functions,
®[x(#)] = 0; however, the RGF implicit function, Eq. (2),
is much simpler that the GE implicit function, Eq. (31).
This difference in simplicity is reflected in the computa-
tional evaluation of the tangent vector. Whereas in the
RGF path the tangent vector is a function of the Hessian
matrix, in the GE path it involves both the Hessian matrix
and the third-order energy derivatives with respect to
the geometry parameters. Note that in both cases the
tangent vector is obtained from an equation like
(VIOx(1)]}(dx(¢)/dr) = 0. See Egs. (4) and (35) for the
RGF path and GE path, respectively. Also the corrector
step is much easier to compute in the RGF method than in
the GE path. In the RGF method the corrector step in-
volves a restricted Newton—Raphson procedure. In sum-
mary, since the RGF method is easy to evaluate and for a
selected r vector describes a path that connects the mini-
mum with the transition state, it becomes an important
tool to locate first-order saddle points.

5 Analysis, examples and discussion

In order to illustrate the algorithms presented previous-
ly, an application to the Miiller—-Brown surface [19] was
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performed. This is a two-dimensional surface that has
three minima and two first-order saddle points and is
described by the equation

4
E(x,y) = ZAi exp [ai (x — x?)z—l—bi (x — x?) (y — y?)
i=1

+alv—f)] (38)

where AT = (=200, —100, —170, 15), a" = (-1, -1, 6.5,
0.7), b" =(0, 0, 11, 0.6), ¢' = (=10, =10, —6.5, 0.7),
x¢ =(1,0,-0.5,—1), and pf =(0,0.5,1.5,1). We will
focus the present study on the path from the minimum at
(—0.558, 1.442) to the saddle point at (—0.822, 0.624) as
this is the most challenging path owing to its curvature.
The results reported of this section were obtained with
the Mathematica program and the implementation
differs in two points from the one described earlier.
Firstly, exact analytic Hessian matrices were used all the
time. Secondly, a fixed trust radius was used, without
rescaling. The reason for such differences is that the aim
of this section is to compare the algorithms emphasizing
only the differences in the way the predictor and
corrector are calculated.

To start, different choices for the vector r are possible.
A sensible one is to choose it as the direction connecting
the two minima. This relates the present method to the
one previously described in Ref. [9]. Another simple
guess would be to choose the direction towards the TS,
but the TS is precisely what one usually tries to locate.
This might be the optimal choice, but the path cannot be
known a priori. Other possible choices are r = (1, 0) and
r = (0, 1). These possibilities make the RGF curve
equivalent to the primitive definitions where only one of
the components of the gradient vector was forced to be
zero [8]. Although they are quite meaningless because
the basis that expresses the gradient vector is arbitrary,
they converge to the desired TS because it is the only
first-order saddle point surrounding the minimum.
Anyway, they present interesting features, such as a TP.
Different RGF curves, according to the choice of the r
vector, are shown in Fig. 1. One clearly sees that con-
siderably fewer points are needed to get to the TS if r is
chosen cleverly; however, because the present objective
is to test the algorithms in all possible situations, the
choice of r = (0, 1) was made. Such a value of r leads to
a RGF curve with a TP.

5.1 Behavior of the FOA algorithm. Comparing
corrector steps

The RGF curve associated with r = (0, 1) present a TP.
This TP is located at (—1.113, 0.637) and corresponds to
zero change in the P, coordinates in the predictor step,
i.e., by_; = 0y_;. This comes from the zero vector of
P'Hr = 0y_; of Eq. (10) and can be checked during the
iterative procedure. A second interesting point occurs
when det(A) = 0. Then, following Eq. (14), b, = 0. This
point is located at (—1.038, 0.566) and also shows the
importance of the corrector step for the FOA algorithm.
According to the different properties of these types of
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-0.25
% (A)

Fig. 1. Different reduced-gradient-following paths from the
minimum located at (-0.558, 1.442) to the transition state located
at (—0.822, 0.624) of the Miiller—Brown surface [19]. From the
right, r = (0, 1) (which is very similar to an r ponting to the
transition state), r pointing to the following minima, and r = (1, 0).
The coordinates can be assumed to be in angstroms and the energy
contour lines, which are the solid lines, to be in millihartrees

points, Aty can be easily modified to make the appro-
priated step.

The behavior of the corrector steps is best displayed in
the area of the TP and the point where det(A) =0
(Fig. 2.) We used a deliberately large trust radius to force
the need of a considerably large corrector step. This is
also achieved by using a large threshold for the switch of
the corrector step so that the points deviate considerable
from the exact trajectory. From Fig. 2 several points can
be made. The two corrector step algorithms described in
the Appendix posses considerably better performance
than the corrector step algorithm described in the main
text; however, all these algorithms are iterative and
therefore computationally time consuming. The main
difference between them shows up near the point where
det(A) = 0. There the predictor step has b; =~ 0 and a
corrector should clearly have b; # 0. The corrector step
algorithm described in the main text, however, is forced
to optimize in the P, subspace only, having b; = 0 and
showing a poor performance. On the other hand, near a
TP, i.e., a point where PrTHr = Oy_1, the three corrector
step algorithms behave almost indistinguishably. In any
case, one has to bear in mind that the corrector step will
usually take place in an N-1 dimensional subspace,
which will usually be of dimension much larger than 1.
Then, the restriction of b; = 0, corresponding to the al-
gorithm described in the main text, should be less dra-
matic than for this two-dimensional surface, and, in fact,
the three corrector step algorithms behave similarly for
chemical reactions such as the one explained later. For
the sake of completeness, we should say that in the iter-
ative corrector step proposed, the first iteration plays the

0.625

0.575}
vid
0.55
0.525}
0.5 . h
-1.1 -1.075 -1.05 -1.0925 -1 -0.975 -0.95
x4y

Fig. 2. First-order approximation algorithm with different correc-
tor steps for the most curved segment of the path. The exact path is
also shown (solid line). Dotted line: algorithm described in the main
text. Bold line: first algorithm in the Appendix. Dashed line: second
algorithm in the Appendix. The region displayed corresponds to
the area around the point (-1.038, 0.566) of the Miiller-Brown
surface [19]

main role, so convergence is normally achieved with a
few iterations.

5.2 Behavior of the SOA algorithm

The behavior of the SOA algorithm is shown in Fig. 3.
This algorithm takes into account the curvature at each
point and consequently is much more effective. To
emphasize this fact, the points in Fig. 3 were calculated
without a corrector step. In fact, as can be seen, the
curvature vector enters the step in a second-order term
that is very similar to the corrector step, simply because
the curvature vector is orthogonal to the tangent vector
appearing in the first-order term. However, a main
difference is that Af, includes first- and second-order
terms, making the calculation of the total path length
much more precise.

Although from these examples one could infer that
the FOA and SOA algorithms have similar costs, this is
not the case. The corrector step is only needed in strong
curvature regions such as the one plotted, and therefore
the FOA is faster than the SOA for the whole path.

5.3 A chemical reaction: the ring opening of
cyclopropyl radical rearrangement

The two RGF algorithms described in Sect. 4 were
implemented in a modified version of the MOPAC
program [21, 22]. The transition-state searches of all the
chemical reactions described here were calculated using



the corresponding wavefunction and the Austin model 1
[23] semiempirical Hamiltonian. The convergence criteria
were on both the max1mum component of the gradlent
vector, 107 kcalmol lA or 10 kcalmol 'rad ™!, and
the step length, 10" A or 10" rad. The correction step
was computed using the first algorithm described in the
Appendix.

The ring opening of cyclopropyl radical rearrange-
ment was studied by Olivella et al. [24] at the ab initio
level of theory. We present the behavior of both the
FOA and the SOA algorithms to locate the corre-
sponding transition state. The molecular geometry
parameters of the reactant, the slightly perturbed reac-
tant, and the transition state located are shown in Fig. 4.
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The perturbed geometry parameters are the bond angle
and the dihedral angle H4C,;C,C;. The normalized gra-
dient vector of the slightly perturbed reactant geometry
corresponds to the vector r. The components of r are
given in Table 1. The behavior of the FOA and SOA
algorithms are shown in Tables 2 and 3, respectively.
The FOA algorithm needs two steps more in order to
converge to the first-order saddle point and it needs
more iterations in the correction step than the SOA
algorithm. The total arc length of the path from the
slightly perturbed geometry to the transition state is
0.67 A — rad using the FOA method and 0.80 A — rad
using the SOA algorithm. Note that in the FOA method
the step arc length is |Azy|. This difference in the total arc
length is due to the fact that in the FOA algorithm the
arc length is evaluated as a straight line, whereas in the

1 Table 1. The components of the normalized r vector. The
components are in internal coordinates, distances, bond angles
and dihedral angles The units of the r Vector components are
kealmol™' A™! for distances and kcalmol™' rad™! for bond angles
and dihedrals. The atom numbering is that given in Fig. 4
Component Value
C,C, 6.30 x 107*

C5C, 3.70 x 1074
(eXeXe 9.95x 107!
H,C, 0.00
H,C,C, -1.30x 107*
H,C,C,C; 1.05 x 107"
e HsC, -1.00 x 10—;‘
T H5C]C2 —1.00 x 10~
HsC,C,C; 1.20 x 107
HC; 0.00
-1.125 -1.1 -1.075-1.05-1.025 -1 -0.975-0.9 HC5C, ~1.10 x 10~
L HeC3C,Cy 0.00
— . . H,Cs 0.00
Fig. 3. Second-order approximation algorithm. For each point the H,C:C, 0.00
(scaled) tangent and curvature vectors are plotted. No corrector H,C5C5C, 3.60 x 10~%
step was used to calculate these points. The longer arrows are the HsC, ~1.70 x 1074
tangent vectors, the shorter arrows are the curvature vectors. The r HsCoCs 0.00
vector is (0, 1). The region displayed corresponds to the area H.C,C.C 0.00
around the point (—1.038, 0566) of the Miiller—-Brown surface [19] gt i
(1800}, [ [1603]g3, BE
(1110.134453) Hg Hy
[108.114125 E] [-108.1]7354 1104412 Z [-98.9)721
H, 1064 5 1485 H, H, 1077 § 135.1 H,
1.106 1454 ;\ X 1106 1.095 1209 1.421 C:\ X 1,093

[108.1]632; He

Hs [-108.1]5123

Reactant

Fig. 4. The geometry parameters of the reactant and transition
state for the ring opening of cyclopropyl radical rearrangement.
The perturbation of the selected geometry parameters is in

1.095

Hs [-794]5123

85.5 1433

[914ls21 Hg

Transition State

parantheses. The bond lengths are given in angstroms and the

bond and dihedral angles are in degrees
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SOA algorithm it is computed in a nonlinear way. Thus,
in SOA algorithm the total arc length will be much
longer that in the FOA algorithm. By evaluating the
steepest-descent path form the transition sate to the
minimum associated with the cyclopropyl radical,
the total arc length is 1.42 A — rad. This difference with
respect to the RGF path clearly shows that both paths
are different; however, both connect the minimum with
the first-order saddle point. In this RGF path no TP and
VRI points were found. This example supports the
proposition of Quapp et al. [25] which states that if
a RGF curve directly connects two stationary points
without crossing a VRI point, the indices of the
stationary point differ by 1.

6 Conclusions

We have presented a theoretical comparative study
between the RGF curve and the GE curve. We have also

Table 2. Behavior of the first-order approximation algorithm to
follow the reduced-gradient-following path for the ring opening
cyclopropyl radical rearrangement

proposed two different algorithms to integrate the RGF
curve: both are based on the interplay of a predictor with
a corrector step.

Acknowledgements. We are indebted to S. Olivella for valuable
suggestions. This research was supported by the Spanish DGICYT
(grants PB98-1240-C02-01 and PB98-1240-C02-02).

Alternative algorithms to compute the corrector step

In this appendix we report two algorithms for the
corrector step. After the predictor step is evaluated, we
assume that the new x point lies slightly off the RGF
curve and we search for a point on the RGF curve, x’,
which is as close as possible to x. We assume that the
first-order Taylor expansion of the RGF function, ®(x,
r) = r—g(x)/|g(x)|, Eq. (2), around the point x, which is
off the RGF curve, is still valid at the point x’, which is
on the RGF curve,

0 =d(x',r) = B(x,r) + VId(x,1)Ax

g) 1 (1 g™y oax
>I<' 2P )H() |

"l Je(x
(A1)

Ste rg[x(n)]* Energy® Ato° Iterations®
P Gl = ’ where Ax = x’—x. We remark that VI®(x, r) is the first
1 38.7 60.3 5.0 x 10:2 2 derivative of ®(x, r) = r—g(x)/|g(x)| at x, a point that is
5 ;‘1"‘31 2}1'1 Z(l)i }8_1 % off the RGF curve. If we build a P, matrix such that
. . . NT . .
4 84.9 69.1 14 % 10" 5 (P.") g(x)/|g(x)| = 0y_1, then multiplying from the left
5 87.3 76.2 20x1070 4 of Eq. (A1) by (P/)" we get
6 28.3 83.3 1.0 x 107 2 T T
7 1.83 83.7 1.0x 102 0 Ov_1 = (P}) rlg(x)| — (P,) H(x)Ax =q(Ax) .  (A2)
8 -1.0 x 107" 83.7 -5.6x107* 0 . . .
9 59 %1073 83.7 32 % 10°° 0 Note that the P,’ matrix depends on the point and is
10 3.6x 1073 83.7 1.9 x107° 0 evaluated at the point x. Equation (A2) is a linear equa-
11 1.8 x 1072 83.7 9.0 x 107 0 tion of the x” variables and represents the straight-line
12 -1.2x 107 83.7 6.0 x 107° 0 approximation to the RGF curve near x. Following Sun
*The r component of the gradient vector in and Ruedenbefg [14] we determine t.he shortqst distance
kealmol-! A~ — kealmol-! rad-! betwqen the point x.and the straight hn.e given in Eq. (A2)
b kealmol~! by using the following Lagrange multiplier method:
°In A - rad 1
4 Number of iterations employed in the step correction L(AX, /1) = EAXTAX _ qu(Ax) , (A})
Table 3. Behavior of the T N b - a R . ¢
second-order approximation Step r g[x(7)] Energy Aty As(ty) Curvature Iterations
iﬁfgggfgrg‘gi‘gfglg@mg 1 38.7 60.3 5.0 %1072 5.0 x 1072 1.255 1
path for the ring opening 2 54.4 61.7 7.1 107 7.1 107 1.330 1
cyclopropyl radical rearrange- 3 71.3 64.4 1.0 x 107! 1.0 x 107! 1.438 2
ment 4 84.7 69.0 1.4 % 10 1.4 % 10 1.537 2
5 87.6 75.7 1.9x 107! 2.0 x 107 2.935 2
6 69.6 81.8 2.0x% 107! 2.0 % 107! 0.961 2
7 7.80 83.7 3.6 x 1072 3.7x 1072 3.125 1
8 -1.6x 107" 83.7 -84 x107* 8.4x107* 2.940 0
9 1.2 x 1072 83.7 6.5x 107° 6.5 % 1072 2.930 0
10 12x 107 83.7 50 107° 5.0 x 107° 2.930 0
The r component of the gradient vector in kcalmol™ A™! — kcalmol™" rad™'

°In kcalmol ™
°In A — rad

9The arc length for this step in A — rad
°The curvature is defined as (¢'¢)"/2, where ¢ is the curvature vector defined in Eq. (18)
"Number of iterations employed in the step correction



where the q(Ax) vector is defined in Eq. (A2). Note that
the A vector has the dimension N-1. The solution of
Eq. (A3) is

Ax = Hx)PL (P) PP} (P) rlg(x)]

By an iterative procedure we find a point such that
(P)'r = 0,_, and consequently Ax = 0. This point is on
the RGF curve since the P,” matrix is orthogonal to the
normalized r vector that characterizes the RGF curve.
By using either the FOA algorithm or the SOA
algorithm this correction step procedure normally
converges in two or three iterations.

The second algorithm is based on Eq. (29) where the
component b; is not forced to be zero. We rewrite
Eq. (29) as

0N71 = P;_rg + PrTHl'bl + PITHPrbel . (AS)

Equation (AS) represents a system of N—1 equations
with N variables. From Eq. (A5) we obtain

(A4)

byt =~ (PTHP,) ' (PTg + PTHb,) (A6)

Now the distance 1/2Ax"Ax =1/2b'b =1/
2(b? +by_"by_,) is minimized with respect to by,

d (1. .

Note that Ax = Sb = [r|P,]b has been used. On sub-
stituting Eq. (A6) into Eq. (A7) after some straighfor-
ward algebra we get

(A7)

rTHP, (PTHP,) "P'g

=- — (A8)
1 + rTHP,(P/HP,) "P/Hr

Equations (A6) and (AS8) are the basic equations for
this algorithm. At the iteration such that PrTg =0y_1,
by = 0 and consequently form Eq. (A6) by_; = 05_; and
the finding point is on the RGF curve. This algorithm
also needs few iterations to converge.
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